Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(31): 11016-11027, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499073

RESUMO

The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.

2.
PeerJ ; 10: e14162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225909

RESUMO

Humic acids (HAs) are complex organic substances with abundant functional groups (e.g., carboxyl, phenolic-OH, etc.). They are commonly distributed in the soil environment and exert a double-edged sword effect in controlling the migration and transformation of uranium. However, the effects of HAs on dynamic processes associated with uranium transformation are still unclear. In this study, we used HAs derived from leonardite (L-HA) and commercial HA (C-HA) as exogenous organic matter and C-HA as the reference. UO2, UO3, and UO2(NO3)2 were used as the sources of U to explore the fractionations of uranium in the soil. We also studied the behavior of the HA. The incubation experiments were designed to investigate the effects of HA on the soil pH, uranium fraction transformation, dynamic behavior of exchangeable, weak acid, and labile uranium. The observations were made for one month. The results showed that soil pH decreased for L-HA but increased for C-HA. Under these conditions, uranium tended to transform into an inactive fraction. The dynamic behavior of exchangeable, weak acid, and labile uranium varied with the sources of HA and uranium. This study highlighted that HA could affect soil pH and the dynamic redistribution of U fractions. The results suggest that the sources of HA and U should be considered when using HA as the remediation material for uranium-contaminated soils.


Assuntos
Substâncias Húmicas , Urânio , Substâncias Húmicas/análise , Solo/química , Urânio/análise , Minerais/química
3.
Appl Microbiol Biotechnol ; 106(18): 6289-6299, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36002692

RESUMO

Metal(loid) selection contributes to selection pressure on antibiotic resistance, but to our knowledge, evidence of the dissemination of antibiotic resistance genes (ARGs) induced by metal(loid)s in mine soil ecosystems is rare. In the current study, using a high-throughput sequencing (HTS)-based metagenomic approach, 819 ARG subtypes were identified in a mine soil ecosystem, indicating that these environmental habitats are important reservoirs of ARGs. The results showed that metal(loid)-induced coselection has an important role in the distribution of soil ARGs. Furthermore, metal(loid) selection-induced ARGs were mainly associated with resistance-nodulation-division (RND) antibiotic efflux, which is distinct from what is observed in agricultural soil ecosystems. By using independent genome binning, metal(loid)s were shown impose coselection pressure on multiple ARGs residing on mobile genetic elements (MGEs), which promotes the dissemination of the antibiotic resistome. Interestingly, the current results showed that the density of several MGEs conferring ARGs was considerably higher in organisms most closely related to the priority pathogens Pseudomonas aeruginosa and Escherichia coli. Together, the results of this study indicate that mine soil ecosystems are important reservoirs of ARGs and that metal(loid)-induced coselection plays critical roles in the dissemination of ARGs in this type of soil habitat. KEY POINTS: • Mining soil ecosystem is a reservoir of antibiotic resistance genes (ARGs). • ARGs distribute via bacterial resistance-nodulation-division efflux systems. • Metal(loid)s coselected ARGs residing on mobile genetic elements in P. aeruginosa and E. coli.


Assuntos
Proteínas de Escherichia coli , Solo , Antibacterianos/farmacologia , Proteínas de Ciclo Celular/genética , Resistência Microbiana a Medicamentos/genética , Ecossistema , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 29(39): 59043-59051, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35381922

RESUMO

As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the benefits to the soil. However, the effects of biochar on the dynamic behavior of soil properties and metal fractions are still unclear. Here, we used two biochars, derived from biowastes (reed and bamboo willow), to treat two cadmium (Cd)-contaminated soils, S1 (loamy sand) and S2 (sandy loam), and determined the dynamic effects. The incubation experiments were designed to investigate the effects of biochar on the dynamic behavior of soil pH, dissolved organic matter (DOM), bioavailable Cd, and the transformation of Cd fractions for 270 days. The results showed that the soil pH, DOM, and bioavailable Cd initially increased and then decreased with incubation time, and the soil pH and DOM were higher, but bioavailable Cd content was lower than the original value. The transformation of the metal fractions changed dynamically, and the exchangeable fraction of Cd decreased with incubation time. Furthermore, the correlation results showed that the DOM can directly control the redistribution of Cd fractions, while soil pH can control it indirectly by regulating the DOM. This study highlighted that biochar can affect soil pH and DOM, redistribute Cd fractions, decrease bioavailable Cd content, and lower the potential risk of heavy metals. This study suggests ways to immobilize heavy metals in contaminated soils using biochar.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/química , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
5.
Langmuir ; 37(43): 12557-12567, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661416

RESUMO

The humic substance is a low-cost and effective adsorbent with abundant functional groups in remediating uranium (U) (VI)-contaminated water. In this research study, leonardite together with leonardite-derived humic acid (L-HA) was used to eliminate U(VI) from water under diverse temperatures (298, 308, and 318 K). L-HA showed a higher adsorption volume for U(VI) than leonardite. U adsorption was varied with pH and increased with temperature. The adsorption kinetics of L-HA had a higher determination coefficient (R2) for pseudo-second-order (R2 > 0.993) and Elovich (R2 > 0.987) models, indicating possible chemisorption-assisted adsorption. This was further supported with the activation energies (15.9 and 13.2 kJ/mol for leonardite and L-HA, respectively). Moreover, U(VI) equilibrium adsorption on leonardite was better depicted with the Freundlich model (R2 > 0.970), suggesting heterogeneous U(VI) adsorption onto the leonardite surface. However, U(VI) adsorption onto L-HA followed the Langmuir equation (R2 > 0.971), which implied the dominant role of monolayer adsorption in controlling the adsorption process. Thermodynamic parameters, including standard entropy change (ΔS0 > 0), Gibbs free energy (ΔG0 < 0), and standard enthalpy change (ΔH0 > 0), suggested a spontaneous and endothermal adsorption process. In addition, ionic species negatively affected U(VI) adsorption by leonardite and L-HA.


Assuntos
Substâncias Húmicas , Urânio , Adsorção , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cinética , Minerais , Termodinâmica , Urânio/análise , Água
6.
Chemosphere ; 278: 130439, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33836401

RESUMO

The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.


Assuntos
Cobre , Substâncias Húmicas , Biomassa , Análise Fatorial , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-31818024

RESUMO

With abundant oxygen-containing functional groups, a humic substance (HS) has a high potential to remediate soils contaminated by heavy metals. Here, HS was first extracted from a leonardite and analyzed for its chemical compositions and spectroscopic characteristics. Then it was assessed for its ability as a washing agent to remove Cd and As from three types of soils (red soil, black soil, and fluvo-aquic soil) that were spiked with those contaminants (Cd: 40.5-49.1 mg/kg; As: 451-584 mg/kg). The operational washing conditions, including the pH and concentration of the HS, washing time and cycles, and liquid-soil ratio, were assessed for Cd and As removal efficiency. At pH 7, with an HS concentration (3672 mg C/L) higher than its critical micelle concentration and a liquid-soil ratio of 30, a single washing for 6-12 h removed 41.9 mg Cd/kg and 199.3 mg As/kg from red soil, 33.5 mg Cd/kg and 291.5 mg As/kg from black soil, and 30.4 mg Cd/kg and 325.5 mg As/kg from fluvo-aquic soil. The removal of Cd and As from the contaminated soils involved the complexation of Cd and As with the carboxyl and phenolic groups of HS. Outcomes from this research could be used to develop a tailor-made HS washing agent for the remediation of Cd- and As-contaminated soils with different properties.


Assuntos
Arsênio/química , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Minerais/química , Poluentes do Solo/química , Solo/química , Adulto , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Artigo em Inglês | MEDLINE | ID: mdl-31052550

RESUMO

Humic acid (HA) is well known as an inexpensive and effective adsorbent for heavy metal ions. However, the thermodynamics of uranium (U) adsorption onto HA is not fully understood. This study aimed to understand the kinetics and isotherms of U(VI) adsorption onto HA under different temperatures from acidic water. A leonardite-derived HA was characterized for its ash content, elemental compositions, and acidic functional groups, and used for the removal of U (VI) from acidic aqueous solutions via batch experiments at initial concentrations of 0-100 mg·L-1 at 298, 308 and 318 K. ICP-MS was used to determine the U(VI) concentrations in solutions before and after reacting with the HA. The rate and capacity of HA adsorbing U(VI) increased with the temperature. Adsorption kinetic data was best fitted to the pseudo second-order model. This, together with FTIR spectra, indicated a chemisorption of U(VI) by HA. Equilibrium adsorption data was best fitted to the Langmuir and Temkin models. Thermodynamic parameters such as equilibrium constant (K0), standard Gibbs free energy (ΔG0), standard enthalpy change (ΔH0), and standard entropy change (ΔS0), indicated that U(VI) adsorption onto HA was endothermic and spontaneous. The co-existence of cations (Cu2+, Co2+, Cd2+ and Pb2+) and anions (HPO42- and SO42-) reduced U(VI) adsorption. The high propensity and capacity of leonardite-derived HA adsorbing U(VI) suggests that it has the potential for cost-effective removal of U(VI) from acidic contaminated waters.


Assuntos
Substâncias Húmicas/análise , Urânio/química , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Cinética , Minerais/química , Temperatura , Termodinâmica , Água
9.
J Environ Radioact ; 180: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28968541

RESUMO

The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g-1 at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO3 and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO3and artificial seawater (0.06% and 0.40%, respectively). Being abundant, inexpensive, and safe, L-HA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils.


Assuntos
Substâncias Húmicas , Minerais/química , Modelos Químicos , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Cinética , Solo , Urânio/análise , Poluentes Radioativos da Água/análise
10.
Environ Sci Pollut Res Int ; 24(29): 23006-23014, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28822093

RESUMO

Adsorption is an important mechanism to immobilize cadmium (Cd) in soil, for which humic substances have a potential. However, commercial humic substances are either very acidic (pH = 2) or alkaline/Na+-enriched, making them less suitable for use in acid and saline soils. Here, we used leonardite to produce humic adsorbents HA (pH = 4.02), Ca-HA (pH = 10.9), and Ca-CPAM-HA (pH = 9.62) by using HCl, CaCl2, or CaCl2-polyacrylamide as a flocculant. Their elemental compositions, acidity, and spectroscopic properties were determined, and their Cd adsorption characteristics were assessed by batch kinetic and thermodynamic experiments at environmentally relevant concentrations. Further, HA was mixed with Cd-contaminated soils and incubated for a month to assess its effect on Cd immobilization. Good fitting of kinetic adsorption data into pseudo-second-order model, together with FTIR spectroscopic data, suggested the chemisorption mechanism by forming Cd(II)-carboxyl complexes. The maximum adsorption capacity derived from the Langmuir equation was 129, 114, and 110 mg Cd(II)/g for HA, Ca-HA, and Ca-CPAM-HA, respectively. These values are almost the same on carbon-normalized basis. HA reduced acetic acid extractable Cd by 31% or more. Besides their high propensity for Cd adsorption, humic adsorbents are inexpensive, safe, and beneficial to soil quality.


Assuntos
Cádmio/análise , Substâncias Húmicas/análise , Minerais/química , Poluentes do Solo/análise , Solo/química , Adsorção , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Termodinâmica
11.
Chemosphere ; 181: 461-467, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28458221

RESUMO

Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties.


Assuntos
Cádmio/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Poluentes do Solo/isolamento & purificação , Cádmio/análise , China , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/normas , Concentração de Íons de Hidrogênio , Poluentes do Solo/análise
12.
PLoS One ; 10(8): e0130607, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313561

RESUMO

Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.


Assuntos
Agricultura , Análise Custo-Benefício , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Fósforo/análise , China , Poluentes Ambientais/química , Modelos Teóricos , Fósforo/química , Medição de Risco , Qualidade da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...